Physics of non-adiabatic transport and field-domain effect in quantum-well infrared photodetectors

نویسنده

  • Danhong Huang
چکیده

A previous theory for studying the distribution of non-uniform fields in multiple-quantum-well photodetectors under an ac voltage is generalized by including non-adiabatic space-charge-field effects. Numerical calculations indicate that field-domain effects are only important at high temperatures or high voltages when both injection and sequentialtunneling currents are significant. On the other hand, it is found that the non-adiabatic effects included in this generalized theory become significant at low temperatures and low voltages when field-domain effects are negligible. In order to explain the non-adiabatic charge-density fluctuations quantum-statistically, a non-adiabatic differential equation is derived based on the self-consistent Hartree model by using a shifted Fermi–Dirac model for the local fluctuation of electron distributions. The non-adiabatic effect is found to cause an ‘‘equilibrium’’ state variation with time under an ac voltage. 2003 Elsevier B.V. All rights reserved. PACS: 73.40.)c; 73.40.Gk; 73.40.Kp; 73.21.Fg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of High Temperature GaN Quantum Dot Infrared Photodetectors

In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which dec...

متن کامل

Quantum interference effect and electric field domain formation in quantum well infrared photodetectors

An observation of quantum interference effect in photocurrent spectra of a weakly coupled bound-to-continuum multiple quantum well photodetector is reported. This effect persists even at high biases where the Kronig–Penney minibands of periodic superlattice potential in the continuum are destroyed. Our results show that electrons remain coherent over a distance of 40–50 nm. The observation was ...

متن کامل

Modeling of dark current in midinfrared quantum well infrared photodetectors

We present a model for the description of dark IV curves in midinfrared quantum well infrared photodetectors at low temperatures, in a regime where dark current is dominated by interwell tunneling. The model separates the IV curve into a low-field and a high-field region allowing us to identify the effects ascribed to miniband transport and carrier localization, respectively. At low fields the ...

متن کامل

The Effect of Structural Parameters on the Electronic States and Oscillator Strength of a Resonant Tunneling Quantum Well Infrared Photodetector

In this paper a resonant tunnelling quantum well infrared photodetector (RT-QWIP) is discussed. Each period of this photodetector structure comprises of a resonant tunnelling structure (AlAs/AlGaAs/AlAs) nearby a quantum well (AlGaAs/GaAs). In this photodetector, photocurrent is produced when an electron makes a transition from the ground state of the well to an excited state which is coupled t...

متن کامل

Implementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage

We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003